Fetal middle cerebral artery Doppler to time second and subsequent intrauterine transfusions to treat anaemia due to red cell alloimmunisation: A randomised trial

Professor Jodie M Dodd
Declaration of Interests

• None
An international collaboration...

- J Dodd
- C Andersen
- J Dickinson
- J Louise
- A Deussen
- R Grivell
- L Voto
- M Kilby
- R Windrim
- G Ryan
- G Voto
- G Saa
- G Gardener
- J Thomas
- P Muller
- C Wilkinson
- C Crowther
- P Devlieger
- J Richter
- G Sander
- F Audibert
- G Seaward
- A Skoll
- P McParland
- R Moore
- C Sreenan
- E Parry
- J Tuohy
- S Pretlove
- A Cameron
- P Wu
- S Court
Diagnosis of Fetal Anemia: MCA Doppler Assessment

Diagnosis of fetal anemia with Doppler ultrasound in the pregnancy complicated by maternal blood group immunization

G. Marti*, A. Adrignolo*, A. Z. Abuhamad†, J. Pirhonen*, D. C. Jones*, A. Ludomirsky** and J. A. Copel*

*Departments of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, Connecticut; †Baylor College of Medicine, Houston, Texas; ‡Eastern Virginia Medical School, Norfolk, Virginia; and **Pennsylvania Hospital, Philadelphia, Pennsylvania, USA

The middle cerebral artery blood velocity increases with advancing gestation and is a non-invasive method of detecting anemia in pregnancies complicated by maternal blood group immunization.
Diagnosis of Fetal Anemia: MCA Doppler Assessment

- Fetal anaemia
 - Blood viscosity
 - Cardiac Output
 - Hyperdynamic fetal circulation
 - Assessment of fetal MCA PSV
Aim

- For a fetus with red cell alloimmunisation who has undergone one IUT
 - can Doppler MCA-PSV be used to time second and subsequent transfusions
 - compared with estimating the fall in fetal haematocrit or haemoglobin
 - without compromising neonatal haemoglobin at birth
Trial Entry

• Inclusion
 – Singleton pregnancy
 – Fetal anaemia secondary to red cell alloimmunisation
 – Fetus has undergone a previous IUT

• Exclusion
 – Fetal anaemia secondary to any other cause
 – Known fetal chromosomal anomaly

• Randomisation
 – On-line system, computer generated schedule
 – Stratification for
 • presence or absence of hydrops at first IUT
 • Type of antibody (Kell versus other)
Timing second & subsequent transfusions:
Predicting the rate of red cell destruction

• Estimated Fall in Fetal Haematocrit
 – 1% per day
 • Moise 1989 Fetal Diag Ther

• Estimated Fall in Fetal Haemoglobin
 – 0.3g/dL per day
 • Scheier 2006 AJOG
Timing second & subsequent transfusions: MCA-PSV

Post transfusion chart

- A: moderate to severe anaemia
- B: mild anaemia
- C: no anaemia

MCA peak velocity (cm/sec)

Gestational age (weeks)

1.69 MoM

1.32 MoM

Median

Copyright of speaker
Outcomes

• Primary
 – Infant Haemoglobin (measured at birth)

• Secondary
 – Adverse infant outcomes related to alloimmunisation
 • Stillbirth or neonatal death; severe fetal anaemia; severe neonatal anaemia; need for neonatal exchange transfusion
 – Procedure related complications necessitating delivery
 • PPROM; PTL; chorioamnionitis; placental abruption
 – Infant complications
 • Preterm birth before 34 weeks; jaundice; NICU admission; top-up transfusion
Sample Size & Analyses

- 35 participants per group; 70 in total
- 80% power (2-sided alpha 0.05) to detect non-inferiority with a margin of 0.6g/dL in haemoglobin at birth
- Intention to treat analysis
- No imputation for missing data
- Both unadjusted and adjusted analyses
 - Adjustment for stratification variables
Flow of Participants

75 Women Consented & Randomised

MCA-PSV Group
N=37

- Excluded
 N=1

- Included in Analyses
 N=36

 3 Neonatal Deaths

Fall Fetal Hct Group
N=38

- Excluded
 N=3

- Included in Analyses
 N=35

 1 Stillbirth;
 2 Neonatal Deaths

Included in Analyses
N=35
Baseline Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MCA-PSV Group</th>
<th>Estimated Fall in Fetal Hct Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>N=36</td>
<td>33.97 (4.78)</td>
<td>33.12 (4.67)</td>
</tr>
<tr>
<td>Maternal Age: Mean (SD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type of Antibody: N (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kell</td>
<td>2 (5.56)</td>
<td>5 (14.29)</td>
</tr>
<tr>
<td>- Other</td>
<td>34 (94.44)</td>
<td>30 (85.71)</td>
</tr>
<tr>
<td>Hydrops at First Transfusion: N (%)</td>
<td>5 (13.89)</td>
<td>5 (14.29)</td>
</tr>
<tr>
<td>Gestational Age (wks) at Randomisation:</td>
<td>30.29 (27.71, 32.07)</td>
<td>30.29 (27.71, 31.86)</td>
</tr>
<tr>
<td>Smoker: N (%)</td>
<td>5 (13.89)</td>
<td>5 (14.29)</td>
</tr>
<tr>
<td>Weight at Trial Entry (kg): Mean (SD)</td>
<td>70.32 (18.02)</td>
<td>71.63 (12.39)</td>
</tr>
<tr>
<td>Height at Trial Entry (kg): Mean (SD)</td>
<td>163.39 (5.89)</td>
<td>161.00 (6.76)</td>
</tr>
<tr>
<td>Ethnicity: N(%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Caucasian</td>
<td>22 (61.11)</td>
<td>21 (60.00)</td>
</tr>
<tr>
<td>- Hispanic</td>
<td>9 (25.00)</td>
<td>9 (25.71)</td>
</tr>
<tr>
<td>- Asian</td>
<td>2 (5.56)</td>
<td>2 (5.71)</td>
</tr>
<tr>
<td>- Other</td>
<td>3 (8.33)</td>
<td>3 (8.57)</td>
</tr>
</tbody>
</table>
Fetal & Neonatal Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>MCA-PSV Group (N=36)</th>
<th>Estimated Fall in Fetal Hct Group (N=35)</th>
<th>Adjusted Treatment Effect (95% CI)</th>
<th>Adjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean cord haemoglobin (g/dL)</td>
<td>103.62 (38.20)</td>
<td>120.26 (31.40)</td>
<td>-15.58 (-32.43, 1.26)</td>
<td>0.090</td>
</tr>
<tr>
<td>Number of IUTs performed</td>
<td>1.75 (1.79)</td>
<td>1.80 (1.32)</td>
<td>0.88 (0.61, 1.26)</td>
<td>0.474</td>
</tr>
<tr>
<td>Adverse fetal or neonatal outcome*</td>
<td>28 (82.35)</td>
<td>26 (77.57)</td>
<td>1.06 (0.82, 1.37)</td>
<td>0.660</td>
</tr>
<tr>
<td>Severe fetal anaemia*</td>
<td>23 (65.71)</td>
<td>25 (75.76)</td>
<td>0.90 (0.65, 1.25)</td>
<td>0.539</td>
</tr>
<tr>
<td>Mean Gestational Age at Birth</td>
<td>35.23 (2.30)</td>
<td>35.07 (2.28)</td>
<td>0.26 (-0.75, 1.27)</td>
<td>0.613</td>
</tr>
<tr>
<td>Mean Birthweight</td>
<td>2581.11 (644.03)</td>
<td>2602.69 (591.34)</td>
<td>-49.79 (-246.14, 146.57)</td>
<td>0.619</td>
</tr>
<tr>
<td>NICU Admission</td>
<td>28 (80.00)</td>
<td>23 (67.75)</td>
<td>1.20 (0.89, 1.60)</td>
<td>0.231</td>
</tr>
<tr>
<td>Severe anaemia at birth*</td>
<td>11 (34.38)</td>
<td>7 (22.58)</td>
<td>1.40 (0.63, 3.13)</td>
<td>0.406</td>
</tr>
<tr>
<td>Neonatal Exchange Transfusion*</td>
<td>14 (40.00)</td>
<td>9 (26.47)</td>
<td>1.42 (0.71, 2.83)</td>
<td>0.316</td>
</tr>
<tr>
<td>Neonatal Top-up Transfusion</td>
<td>21 (60.00)</td>
<td>19 (55.88)</td>
<td>1.05 (0.70, 1.57)</td>
<td>0.827</td>
</tr>
<tr>
<td>Perinatal death*</td>
<td>3/36 (8.33)</td>
<td>3/35 (8.57)</td>
<td>1.09 (0.26, 4.61)</td>
<td>0.905</td>
</tr>
</tbody>
</table>
Fetal & Neonatal Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>MCA-PSV Group (N=36)</th>
<th>Estimated Fall in Fetal Hct Group (N=35)</th>
<th>Adjusted Treatment Effect (95% CI)</th>
<th>Adjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean cord haemoglobin (g/dL)</td>
<td>103.62 (38.20)</td>
<td>120.26 (31.40)</td>
<td>-15.58 (-32.43, 1.26)</td>
<td>0.090</td>
</tr>
<tr>
<td>Number of IUTs performed</td>
<td>1.75 (1.79)</td>
<td>1.80 (1.32)</td>
<td>0.88 (0.61, 1.26)</td>
<td>0.474</td>
</tr>
<tr>
<td>Adverse fetal or neonatal outcome*</td>
<td>28 (82.35)</td>
<td>26 (74.79)</td>
<td>1.06 (0.82, 1.37)</td>
<td>0.660</td>
</tr>
<tr>
<td>Severe fetal anaemia*</td>
<td>23 (65.71)</td>
<td>25 (71.76)</td>
<td>0.90 (0.65, 1.25)</td>
<td>0.539</td>
</tr>
<tr>
<td>Mean Gestational Age at Birth</td>
<td>35.23 (2.30)</td>
<td>35.07 (2.28)</td>
<td>0.26 (-0.75, 1.27)</td>
<td>0.613</td>
</tr>
<tr>
<td>Mean Birthweight</td>
<td>2581.11 (644.03)</td>
<td>2602.69 (591.34)</td>
<td>-49.79 (-246.14, 146.57)</td>
<td>0.619</td>
</tr>
<tr>
<td>NICU Admission</td>
<td>26 (72.22)</td>
<td>23 (67.75)</td>
<td>1.20 (0.89, 1.60)</td>
<td>0.231</td>
</tr>
<tr>
<td>Severe anaemia at birth*</td>
<td>11 (33.33)</td>
<td>7 (22.58)</td>
<td>1.40 (0.63, 3.13)</td>
<td>0.406</td>
</tr>
<tr>
<td>Neonatal Exchange Transfusion*</td>
<td>14 (40.00)</td>
<td>9 (26.47)</td>
<td>1.42 (0.71, 2.83)</td>
<td>0.316</td>
</tr>
<tr>
<td>Neonatal Top-up Transfusion</td>
<td>21 (60.00)</td>
<td>19 (55.88)</td>
<td>1.05 (0.70, 1.57)</td>
<td>0.827</td>
</tr>
<tr>
<td>Perinatal death*</td>
<td>3/36 (8.33)</td>
<td>3/35 (8.57)</td>
<td>1.09 (0.26, 4.61)</td>
<td>0.905</td>
</tr>
</tbody>
</table>
Fetal & Neonatal Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>MCA-PSV Group (N=36)</th>
<th>Estimated Fall in Fetal Hct Group (N=35)</th>
<th>Adjusted Treatment Effect (95% CI)</th>
<th>Adjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean cord haemoglobin (g/dL)</td>
<td>103.62 (38.20)</td>
<td>120.26 (31.40)</td>
<td>-15.58 (-32.43, 1.26)</td>
<td>0.090</td>
</tr>
<tr>
<td>Number of IUTs performed</td>
<td>1.75 (1.79)</td>
<td>1.80 (1.32)</td>
<td>0.88 (0.61, 1.26)</td>
<td>0.474</td>
</tr>
<tr>
<td>Adverse fetal or neonatal outcome*</td>
<td>28 (82.35)</td>
<td>26 (74.73)</td>
<td>1.06 (0.82, 1.37)</td>
<td>0.660</td>
</tr>
<tr>
<td>Severe fetal anaemia*</td>
<td>23 (65.71)</td>
<td>25 (75.76)</td>
<td>0.90 (0.65, 1.25)</td>
<td>0.539</td>
</tr>
<tr>
<td>Mean Gestational Age at Birth</td>
<td>35.23 (2.30)</td>
<td>35.07 (2.28)</td>
<td>0.26 (-0.75, 1.27)</td>
<td>0.613</td>
</tr>
<tr>
<td>Mean Birthweight</td>
<td>2581.11 (544.03)</td>
<td>2602.69 (591.34)</td>
<td>-49.79 (-246.14, 146.57)</td>
<td>0.619</td>
</tr>
<tr>
<td>NICU Admission</td>
<td>26 (86.00)</td>
<td>23 (67.75)</td>
<td>1.20 (0.89, 1.60)</td>
<td>0.231</td>
</tr>
<tr>
<td>Severe anaemia at birth*</td>
<td>11 (34.38)</td>
<td>7 (22.58)</td>
<td>1.40 (0.63, 3.13)</td>
<td>0.406</td>
</tr>
<tr>
<td>Neonatal Exchange Transfusion*</td>
<td>14 (40.00)</td>
<td>9 (26.47)</td>
<td>1.42 (0.71, 2.83)</td>
<td>0.316</td>
</tr>
<tr>
<td>Neonatal Top-up Transfusion</td>
<td>21 (60.00)</td>
<td>19 (55.88)</td>
<td>1.05 (0.70, 1.57)</td>
<td>0.827</td>
</tr>
<tr>
<td>Perinatal death*</td>
<td>3/36 (8.33)</td>
<td>3/35 (8.57)</td>
<td>1.09 (0.26, 4.61)</td>
<td>0.905</td>
</tr>
</tbody>
</table>
Maternal & Procedure Related Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>MCA-PSV Group (N=36)</th>
<th>Estimated Fall in Fetal Hct / Hb Group (N=35)</th>
<th>Unadjusted P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threatened preterm labor</td>
<td>2 (5.56)</td>
<td>3 (8.57)</td>
<td>0.623</td>
</tr>
<tr>
<td>PPROM</td>
<td>1 (2.78)</td>
<td>0 (0.00)</td>
<td>>0.99</td>
</tr>
<tr>
<td>Placental Abruption</td>
<td>0 (0.00)</td>
<td>1 (2.86)</td>
<td>0.493</td>
</tr>
<tr>
<td>Chorioamnionitis</td>
<td>0 (0.00)</td>
<td>1 (2.86)</td>
<td>0.493</td>
</tr>
<tr>
<td>Preterm birth before 34 weeks</td>
<td>9 (25.00)</td>
<td>7 (20.00)</td>
<td>0.616</td>
</tr>
</tbody>
</table>
Comparisons with other studies

• Procedure related risk of complications: 2.8%
• Overall survival rate: 93%
 – Consistent with 3.1%, & >90% reported (van Kamp 2005)
 – Higher than the 1.2% & 97% reported 2001-2014 (Zwiers 2016)

• Differences
 – Likely reflect pragmatic multicentre study vs single tertiary referral centre with high case volume and clinician expertise
Limitations

- Modification of sample size from original trial registration
 - To reflect recruitment rates and allocated funding
 - Well powered to detect differences in Hb at birth
 - Underpowered to detect differences in other clinical outcomes

- Slower than anticipated recruitment
 - Delays in obtaining ethical approval
 - Mean 10 months sites where recruitment subsequently occurred
 - Mean 18 months sites where recruitment did not occur
 - Collaborator time pressures & lack of research support
 - Delay between investigators providing in principal support & funding
 - Development of protocol October 2006
 - Funding available January 2010
 - Change in clinical equipoise
Conclusions

• Both Doppler MCA-PSV measurement and estimating the fall in fetal haematocrit can be used to time second and subsequent IUTs

• Considerations with Doppler MCA-PSV:
 – Lower mean Hb at birth
 – Increased need for neonatal exchange transfusion
 – Increased frequency antenatal appointments for ultrasound surveillance
Acknowledgements

• We are indebted to the women and their infants who participated in this trial

• NHMRC
 – Neil Hamilton Fairley Overseas Fellowship 2006-2009
 – Practitioner Fellowship 2010-2014; 2015-2019
 – Project grant funding 2010-2012

• Discipline Obstetrics & Gynaecology, & Robinson Research Institute, The University of Adelaide

• Women’s and Children’s Hospital, North Adelaide

• Fetal Medicine Unit, Mt Sinai Hospital and University of Toronto
Perinatal Deaths

• MCA-PSV Group: 3 neonatal deaths
 – Hydropic fetus; death at 29 weeks following emergency preterm birth
 – Hydropic fetus; death at 30 weeks following emergency preterm birth
 – Death at 33 weeks secondary to liver failure following multiple exchange transfusions

• Estimated Fall in Fetal Hct Group: 1 stillbirth; 2 neonatal deaths
 – Stillbirth; hydropic fetus at 31 weeks; death occurred between randomization and scheduled second IUT
 – Preterm birth; no evidence of hydrops but severe anemia; complications of prematurity compounded by complex CHD
 – Preterm birth; no evidence of hydrops but severe anemia; complications of prematurity compounded by sepsis & multi-organ failure
Previous pregnancies affected by alloimmunization

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>MCA-PSV Group N=36</th>
<th>Estimated Fall in Fetal Hct Group N=35</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Previous Pregnancies >20wks: Median (IQR)</td>
<td>3.00 (2.00, 3.50)</td>
<td>1.00 (1.00, 4.00)</td>
<td>2.00 (1.00, 4.00)</td>
</tr>
<tr>
<td>1 Previous Pregnancy affected by Red Cell Alloimmunization: N (%)</td>
<td>14 (40.00)</td>
<td>12 (37.50)</td>
<td>26 (38.81)</td>
</tr>
<tr>
<td>2+ Previous Pregnancies affected by Red Cell Alloimmunization: N (%)</td>
<td>12 (34.29)</td>
<td>5 (15.63)</td>
<td>17 (25.37)</td>
</tr>
<tr>
<td>Of Pregnancies affected by Red Cell Alloimmunization: N (%)*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Resulting in preterm birth</td>
<td>4 (15.38)</td>
<td>4 (23.53)</td>
<td>8 (18.60)</td>
</tr>
<tr>
<td>- Resulting in neonatal death</td>
<td>5 (19.23)</td>
<td>0 (0.00)</td>
<td>5 (15.15)</td>
</tr>
</tbody>
</table>
Original Sample Size Estimate

• A total of 536 women

• To detect a 30% reduction in a primary composite adverse outcome (De Boer 2008; Abdel Fattah 2005)
 – Stillbirth
 – Neonatal Death
 – Severe fetal anemia
 – Severe anemia at birth
 – Neonatal exchange transfusion

• 5% significance level; 90% power
Severe Fetal Anemia

• At the second or any subsequent transfusion

• Pre-transfusion haemoglobin ≥ 5 standard deviations below the mean for gestational age

• Mean Hb for gestational age defined according to the formula (Nikolaides Lancet 1988)
 – $Mean \ Hb = 11 + GA \text{ weeks} - 17 \times 0.19$
 – Standard Deviation 1g/dL
Care of women in both groups

• Surveillance prior to procedure

• Corticosteroids if GA >24 weeks

• Ultrasound guided technique by appropriately trained staff
 – Transfusion site
 • Clinician judgement
 – Fetal paralysis
 • Clinician judgement & local hospital practices
 – Transfused blood volume
 • GA, EFW, pre-transfusion haemoglobin

• Timing of birth
 – Clinician judgement & local hospital practices
Principal Findings

- Both Doppler MCA-PSV measurement and estimating the fall in fetal haematocrit can be used to time second and subsequent IUTs
 - Trend to lower haemoglobin at birth in MCA-PSV Group
 - Mean difference in Hb at birth: 103.6 vs 120.3
 - P=0.09
 - Trend to more neonatal exchange transfusions in MCA-PSV Group
 - 40.0% vs 26.5%
 - P=0.316

- No significant differences in other alloimmunisation or procedure related complications
 - Small event numbers
 - Underpowered