Vaginal microbiota & different aetiologies of preterm birth

- Vaginal *Lactobaccilli* - central to reproductive health
 Lindsay Kindinger
 O&G Specialist Registrar
- Ascending vaginal infection - important cause of preterm birth

David MacIntyre
Yun Lee
Julian Marchesi
TG Teoh
Phillip Bennett

AIM:
Assess interaction between cervical length and vaginal microbiome

No interests to declare

Methods

Recruitment in 2 groups

1. History of previous sPTB < 37w
 n=67

2. Excisional cervical treatment for CIN > 1cm
 n=66

Longitudinal follow up

Data collected

Vaginal microbiome
HVS for 16 sRNA sequencing

Cervical length
Transvaginal scan

Methods

Longitudinal follow up

Data collected

Vaginal microbiome
HVS for 16 sRNA sequencing

Cervical length
Transvaginal scan

Analysis

Gestation at birth
Ultrasound data: cervical length

n=133
24% delivered preterm

Recruitment risk factor

- **Cervical treatment**, n=66
- **Previous PTB**, n=67

Preterm birth rates

- **Term birth**
- **Preterm birth <37w**

- 37% Preterm birth
- 15% Cervical treatment

Gestation at sampling (weeks)

Cervical treatment (CT) n=113
History of PTB (Hx) n=86

* Ultrasound data: cervical length
16s rRNA gene sequencing n=395 samples

Species data classified into Community State Types (CSTs) (Ravel et al)

Vaginal dysbiosis & L. iners:

Implicated in
- Preterm birth (Petricevic 2014, DiGiulio 2015)
- HPV persistence, CIN severity (King 2011, Brotman 2014, Mitra 2015)
Microbiome & subsequent gestation at birth

12 weeks

- **L. crispatus**
- **L. jensenii**
- **L. iners**

Term, >37w | Preterm, 34-37w | 28-34w | <28w
Microbiome & subsequent gestation at birth

Undelivered pregnancies (%) vs Gestation at birth (weeks)

- L. crispatus
- L. iners
- Dysbiosis

Percent survival:
- 100%
- 80%
- 60%
- 40%
- 20%
- 0%

Weeks Gestation at birth:
- 34 weeks
Species, Community state types

Previous preterm birth

Cervical CIN treatment

Gestation at screening (weeks)

Gestation at screening (weeks)

Percentage

<table>
<thead>
<tr>
<th>CST, species:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. crispatus</td>
</tr>
<tr>
<td>L. gasseri</td>
</tr>
<tr>
<td>L. Iners</td>
</tr>
<tr>
<td>Dybiosis</td>
</tr>
<tr>
<td>L. jensenii</td>
</tr>
</tbody>
</table>

\[P = 0.03; \text{ANOVA} \]

\[P = 0.06; \text{ANOVA} \]
Vaginal microbiome

Cervical length <24w

Interaction

Gestation at birth (weeks)

Cervical length (mm)

Short cervix

L. crispatus

L. iners

37 weeks

Gestational age at birth

CST I r=0.15
CST III r=0.32*

* Spearman correlation

P<0.01
Risk of preterm birth

L. iners dominant microbiome <24 weeks....

Previous PTB <37 weeks
- RR 2.4 (95% CI 1.2 - 9.1)

Cervical treatment
- RR 1.2 (95% CI 0.8 – 5.1)

CL measurements

Short cervix ≤25mm
- *L. iners* RR 2.7 (95% CI 1.6 – 14.1)
- *L. crispatus* RR 1.94 (95% CI 1.4 – 1.1)

Short cervix ≤25mm
- *L. iners* RR 8.5 (95% CI 1.8 – 15.0)
- *L. crispatus* RR 0.92 (95% CI 0.6 – 1.9)
In summary

Interaction between the cervix and vaginal microbiome
...contributes to preterm birth risk

- L. iners - pathogenic
- L. crispatus - protective

Vaginal microbial profiles differ among prior preterm birth vs excisional CIN treatment
Vaginal microbiota, cervix and preterm birth

Acknowledgements

Supervisors
- PR Bennett
- DA MacIntyre
- TG Teoh
- J Marchesi

Imperial College IRDB Lab
- Yooni Lee

Cardiff University
- Ann Smith

Help with sample collection at Imperial College NHS Trust prematurity clinics
- Joanna Cook
- Rachael Quinlan

Funding
- NIHR Imperial BRC
 Translating research into patient benefits
Microbiome & subsequent gestation at birth

- Term, >37w
- Preterm, 34-37w
- 28-34w
- <28w

12 week sampling